Bone mineralization-dependent craniosynostosis and craniofacial shape abnormalities in the mouse model of infantile hypophosphatasia.

نویسندگان

  • John Durussel
  • Jin Liu
  • Cassandra Campbell
  • Hwa K Nam
  • Nan E Hatch
چکیده

BACKGROUND Inactivating mutations in tissue-nonspecific alkaline phosphatase (TNAP) cause hypophosphatasia (HPP), which is commonly characterized by decreased bone mineralization. Infants and mice with HPP can also develop craniosynostosis and craniofacial shape abnormalities, although the mechanism by which TNAP deficiency causes these craniofacial defects is not yet known. Manifestations of HPP are heterogeneous in severity, and evidence from the literature suggests that much of this variability is mutation dependent. Here, we performed a comprehensive analysis of craniosynostosis and craniofacial shape variation in the Alpl(-/-) mouse model of murine HPP as an initial step toward better understanding penetrance of the HPP craniofacial phenotype. RESULTS Despite similar deficiencies in alkaline phosphatase, Alpl(-/-) mice develop craniosynostosis and a brachycephalic/acrocephalic craniofacial shape of variable penetrance. Only those Alpl(-/-) mice with a severe bone hypomineralization defect develop craniosynostosis and an abnormal craniofacial shape. CONCLUSIONS These results indicate that variability of the HPP phenotype is not entirely dependent upon the type of genetic mutation and level of residual alkaline phosphatase activity. Additionally, despite a severity continuum of the bone hypomineralization phenotype, craniofacial skeletal shape abnormalities and craniosynostosis occur only in the context of severely diminished bone mineralization in the Alpl(-/-) mouse model of HPP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypophosphatasia

Hypophosphatasia is a rare inherited disorder characterized by defective bone and teeth mineralization, and deficiency of serum and bone alkaline phosphatase activity. The prevalence of severe forms of the disease has been estimated at 1/100 000. The symptoms are highly variable in their clinical expression, which ranges from stillbirth without mineralized bone to early loss of teeth without bo...

متن کامل

Hypophosphatasia Etienne Mornet 1 , 2

Hypophosphatasia is a rare inherited disorder characterized by defective bone and teeth mineralization, and deficiency of serum and bone alkaline phosphatase activity. The prevalence of severe forms of the disease has been estimated at 1/100 000. The symptoms are highly variable in their clinical expression, which ranges from stillbirth without mineralized bone to early loss of teeth without bo...

متن کامل

Valproic Acid-Induced Time Dependent Craniofacial Defects in Wistar Rat Fetuse

Purpose: we previously reported that maternal valproic acid (VA) administration during rat pregnancy produced CNS defect ranely, syringomyelia. Furthermore, it seems that administration of valproic acid during critical period of pregnancy may affect on development of other embryonic skeletal portion such as craniofacial region. The goal of our study was to determine whether there is a relations...

متن کامل

Loss-of-Function of Gli3 in Mice Causes Abnormal Frontal Bone Morphology and Premature Synostosis of the Interfrontal Suture

Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling. ...

متن کامل

Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1.

Tissue-nonspecific alkaline phosphatase (TNAP) is essential for bone matrix mineralization, but the central mechanism for TNAP action remains undefined. We observed that ATP-dependent (45)Ca precipitation was decreased in calvarial osteoblast matrix vesicle (MV) fractions from TNAP-/- mice, a model of infantile hypophosphatasia. Because TNAP hydrolyzes the mineralization inhibitor inorganic pyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental dynamics : an official publication of the American Association of Anatomists

دوره 245 2  شماره 

صفحات  -

تاریخ انتشار 2016